If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2+h-240=0
a = 1; b = 1; c = -240;
Δ = b2-4ac
Δ = 12-4·1·(-240)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-31}{2*1}=\frac{-32}{2} =-16 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+31}{2*1}=\frac{30}{2} =15 $
| -90=-10t | | -83=-8-5p | | -(r-8)=-1 | | 49=-1-5a | | 35=-1-4v | | 9(x+5)=162 | | -120=-10(-8+r) | | 8p-9-15p+7=29p-9-24p+10 | | 7w-23=5(w-1) | | (v+4)^2+3=51 | | Y=3x^2-18x-10 | | x-14=3(x+) | | 3y-4/5=6 | | 3x=1/728 | | 0.004*x=10 | | 7a-4a+8-9a-2=6a-20-5a+16 | | 2+x-5=2x | | 6-2y=-8y+6y | | 77-16x^2=0 | | 5x+6x+8x=1000 | | X^3-14x^2-11x-72=0 | | y=8E-06 | | p^2-4p-14=-2 | | 3e/e=8/6 | | P-8=q | | 3e/e=18/8 | | 65x1.59x.72=74.412 | | y+15=2y-30 | | x-41=-21 | | 11.99(x)=4.11 | | 11.99x=4.11 | | 96x=10 |